An Introduction to Thermal Physics
An Introduction to Thermal Physics
1st Edition
ISBN: 9780201380279
Author: Daniel V. Schroeder
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1.7, Problem 62P

Consider a uniform rod of material whose temperature varies only along its length, in the x direction. By considering the heat flowing from both directions into a small segment of length Δ x , derive the heat equation, T t = K 2 T x 2 , where K = k t / c p , c is the specific heat of the material, and p is its density. (Assume that the only motion of energy is heat conduction within the rod; no energy enters or leaves along the sides.) Assuming that K is independent of temperature, show that a solution of the heat equation is T ( x , t ) = T 0 + A t e x 2 / 4 K t , where T 0 is a constant background temperature and A is any constant. Sketch (or use a computer to plot) this solution as a function of x, for several values of t. Interpret this solution physically, and discuss in some detail how energy spreads through the rod as time passes.

Blurred answer
Students have asked these similar questions
A 0.1 kg copper cube at t1 =80℃ is placed in 0.5 kg of water at t2 = 20℃ in a very well – insulated container with small mass. Calculate the final temperature t, if specific heat capacity values are c1= 400 J/(kg∙K), c2= 4200 J/(kg∙K). Note that the heat lost by copper cube is Q1=c1m1 (t1 -t), the heat received by water is Q2=c2m2 (t-t2 ), and Q1=Q2 .
A thin glaze is applied on the surface of a thick ceramic block by heating it above 650◦C, which allows it to flow over the surface. On cooling, the glaze becomes sufficiently stiff at 500◦C to act as a solid (Fig. 3). Calculate the stresses in the glaze layer by assuming it to be in a state of plane stress in the X1 − X2 plane when it has cooled to 20◦C. The thermal expansion coefficients of the glaze (g) and ceramic (c) are respectively, αg = 4.0 × 10−6/◦C and αc = 5.5×10−6/◦C. Take E = 300GPa and ν = 0.15 for the glaze and the block. Assume the stresses in the block to be negligible.
Suppose 8.50 x 10° J of energy are transferred to 1.79 kg of ice at 0°C. The latent heat of fusion and specific heat of water are L; = 3.33 x 10° J/kg and c = 4186 (kg · °C) HINT (a) Calculate the energy (in J) required to melt all the ice into liquid water. (Enter your answer to at least three significant figures.) (b) How much energy (in J) remains to raise the temperature of the liquid water? (Enter your answer to at least three significant figures.) (c) Determine the final temperature of the liquid water in Celsius. °C

Chapter 1 Solutions

An Introduction to Thermal Physics

Ch. 1.2 - Rooms A and B are the same size, and are connected...Ch. 1.2 - Calculate the average volume per molecule for an...Ch. 1.2 - A mole is approximately the number of protons in a...Ch. 1.2 - Calculate the mass of a mole of dry air, which is...Ch. 1.2 - Estimate the average temperature of the air inside...Ch. 1.2 - Prob. 16PCh. 1.2 - Prob. 17PCh. 1.2 - Prob. 18PCh. 1.2 - Suppose you have a gas containing hydrogen...Ch. 1.2 - Prob. 20PCh. 1.2 - During a hailstorm, hailstones with an average...Ch. 1.2 - Prob. 22PCh. 1.3 - Calculate the total thermal energy in a liter of...Ch. 1.3 - Calculate the total thermal energy in a gram of...Ch. 1.3 - List all the degrees of freedom, or as many as you...Ch. 1.4 - A battery is connected in series to a resistor,...Ch. 1.4 - Give an example of a process in which no heat is...Ch. 1.4 - Estimate how long it should take to bring a cup of...Ch. 1.4 - A cup containing 200 g of water is sitting on your...Ch. 1.4 - Put a few spoonfuls of water into a bottle with a...Ch. 1.5 - Imagine some helium in cylinder with an initial...Ch. 1.5 - Prob. 32PCh. 1.5 - An ideal gas is made to undergo the cyclic process...Ch. 1.5 - An ideal diatomic gas, in a cylinder with a...Ch. 1.5 - Prob. 35PCh. 1.5 - In the course of pumping up a bicycle tire, a...Ch. 1.5 - Prob. 37PCh. 1.5 - Two identical bubbles of gas form at the bottom of...Ch. 1.5 - By applying Newtons laws to the oscillations of a...Ch. 1.5 - In problem 1.16 you calculated the pressure of...Ch. 1.6 - To measure the heat capacity of an object, all you...Ch. 1.6 - The specific heat capacity of Albertsons Rotini...Ch. 1.6 - Calculate the heat capacity of liquid water per...Ch. 1.6 - Prob. 44PCh. 1.6 - Prob. 45PCh. 1.6 - Measured heat capacities of solids and liquids are...Ch. 1.6 - Your 200-g cup of tea is boiling-hot. About how...Ch. 1.6 - When spring finally arrives in the mountains, the...Ch. 1.6 - Prob. 49PCh. 1.6 - Consider the combustion of one mole of methane...Ch. 1.6 - Use the data at the back of this book to determine...Ch. 1.6 - The enthalpy of combustion of a gallon (3.8...Ch. 1.6 - Look up the enthalpy of formation of atomic...Ch. 1.6 - Prob. 54PCh. 1.6 - Heat capacities are normally positive, but there...Ch. 1.7 - Calculate the rate of heat conduction through a...Ch. 1.7 - Home owners and builders discuss thermal...Ch. 1.7 - According to a standard reference table, the R...Ch. 1.7 - Make a rough estimate of the total rate or...Ch. 1.7 - A frying pan is quickly heated on the stovetop to...Ch. 1.7 - Geologists measure conductive heat flow out of the...Ch. 1.7 - Consider a uniform rod of material whose...Ch. 1.7 - Prob. 63PCh. 1.7 - Make a rough estimate of the thermal conductivity...Ch. 1.7 - Prob. 65PCh. 1.7 - In analogy with the thermal conductivity, derive...Ch. 1.7 - Make a rough estimate of how far food coloring (or...Ch. 1.7 - Prob. 68PCh. 1.7 - Imagine a narrow pipe, filled with fluid, in which...Ch. 1.7 - Prob. 70P

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY