Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5.7, Problem 22AAP

If boron is diffused into a thick slice of silicon with no previous boron in it at a temperature of 1100°C for 5 h, what is the depth below the surface at which the concentration is 1017 atoms/cm3 if the surface concentration is 1018 atoms/cm3? D = 4 × 10−13 cm2/s for boron diffusing in silicon at 1100°C.

Blurred answer
Students have asked these similar questions
Copper at 500 °C has 1.10×1015 vacancies/cm³. The atomic weight of Cu is 63.55 g/mol and the density at this temperature is 8.96 g/cm³. Avogadro constant NA ~ 6.022×1023 atoms/mol. Boltzmann constant (K) - 8.62×10-³ ev/atom • K. (a) What is the activation energy required to create a vacancy in Cu? (b) Cu is then cooled to 400 °C. What will be the number of vacancies per cubic centimeter? Assume that the change in the density in the cooling is negligible.
Problem 3. Phosphorus is diffused into a thick slice of silicon with no previous phosphorus in it at a temperature of 1100°C. If the surface concentration of the phosphorus is 1 × 1018 atoms/cm³ and its concentration at 1 um is 1 × 1015 atoms/cm, how long must be the diffusion time? D = 3.0 x 10-13 cm²/s for P diffusing in Si at 1100°C.
3. A block of pure iron needs to be converted to steel. The density of iron is 7.86x10^3kg/m^3, and the atomic weight is 0.0558kg/mol. The concentration of carbon at position A is 4x10^26 at/m^3. The carbon atomic weight is 0.012kg/mol. Carbon must be diffused into the iron to convert it to steel. It is desired to have 1025 atoms of carbon per m' at point B. Position A is 1mm from position B. Assume that you have 1m^3 of iron. You heat the material uniformly to 1200°C. Do, carton = 79x10 * m/sec, Ea = 83kJ/mol, and the density of carbon is 2260kg/m^3. (4pts) 1mm Fe block A What is Dearbon at 1200°C in m?/sec? i. ii. Calculate the FLUX (J) of carbon atoms in atoms per m²-sec at 1200°C? B.

Chapter 5 Solutions

Foundations of Materials Science and Engineering

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY