Steel Design (Activate Learning with these NEW titles from Engineering!)
Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
Question
Book Icon
Chapter 4, Problem 4.8.4P
To determine

(a)

To select:

American standard channel for the given compression member using LRFD.

Expert Solution
Check Mark

Answer to Problem 4.8.4P

Use C15×33.9

Explanation of Solution

Given information:

Given compression member is :

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 4, Problem 4.8.4P , additional homework tip  1

Calculation:

Calculate the factored load by LRFD by using the equation.

Pu=1.2DL+1.6LL

Here DL is the dead load, LL is the live load.

Substitute

DL=30,LL=70

Pu=1.2DL+1.6LL     =1.2(30)+1.6(70)     =148kips

Try a C section C15×33.9

AISC must be used, as this shape is non slender and is neither a double angle nor a tee shape

Check the effective slenderness ratio about y-axis using the formula.

slenderness ratio=KLr

Here K is the effective length factor

L is the length of the member between the supports.

r is the radius of gyration

Take the properties steel from the AISC steel table. K value depends on the end conditions

K=0.65,(12×12)in,ry=0.901

slenderness ratio=KLr                          =0.65(12×12)0.901                          =103.9<200(OK)

Calculate the elastic buckling stress using the formula.

Fe=π2E(KL/rx)2Substitute E=29000,KL/r=103.9Fe=π2E(KL/r)2    =π229000103.92    =26.51ksi

Check for slenderness ratio by using the formula.

Slenderness ratio=4.71EFy

Here Fy is the yield strength

Substitute Fy=50ksi,E=29000

Slenderness ratio=4.712900050                           =113.4

Since 103.9< 113.4, so calculate critical buckling stress using the formula

 Fcr=0.658(FyFe)Fy      =0.658(3626.51)(36)      =20.39ksi

Calculate the nominal compressive strength of column using the formula.

Pn=FcrAg

Substitute, Fcr = 20.39, Ag = 10.0

Pn=FcrAg

= 20.39(10.0)

= 203.9kips

Calculate design strength of the column using by LRFD method

Pu=ϕcPn

Here we have Pn=203.9, ϕ=0.9

Pu=ϕcPn    =0.9(203.9)    =184kips>148kips(OK)

Check the effective slenderness ratio about x-axis using the formula.

slenderness ratio=KLr

Substitute K=0.65,(12×12)in,rx=5.62

slenderness ratio=KLr                          =0.65(12×12)5.62                          =16.65

From the manual companion CD:

r¯o=5.94inH=0.920

Calculate the elastic buckling stress using the formula.

Fe=π2E(KL/rx)2Substitute E=29000,KL/r=16.65

Fe=π2E(KL/r)2    =π22900016.652    =1032ksi

Calculate the value of Fez

Fez=(π2ECw(KzL)2+GJ)1Agr¯o2      =[π2(29000)(358)(0.65×12×12)2+(11200(1.01))]110.0(5.94)2     =65.21ksi

Calculate the total stress by equation

Total stress=Fey+Fez                  =1032+65.21                  =1097ksi

Calculate the value of Fcr by using the AISC equation

Fcr=(Fcry+Fcrz2H)[114FcryFcrzH(Fcry+Fcrz)2]      =(10972(0.920))[114(1032)(65.21)(0.920)10972]      =64.88ksi

In order to determine which compressive strength equation to be use, compare the value of Fe

0.44Fy=0.44(36)            =15.8ksi

Since 64.88>15.8, so calculate critical buckling stress using the formula.

Fcry=0.658(FyFe)Fy      =0.658(3664.88)(36)      =28.54ksi

Calculate the maximum strength by using the formula.

. Pn=Fcr+Ag    =28.54(10.0)    =285.4kipscalculate the design strength by using the formula ϕcPn=0.90(285.4)       =257kips>148kips(OK)

Conclusion:

Therefore, the American channel is calculated using this formula :Pn=Fcr+Ag   .

To determine

(b)

To select:

American standard channel for the given compression member using ASD.

Expert Solution
Check Mark

Answer to Problem 4.8.4P

 C15×33.9

Explanation of Solution

Given information:

Given compression member is

Steel Design (Activate Learning with these NEW titles from Engineering!), Chapter 4, Problem 4.8.4P , additional homework tip  2

Calculation:

Calculate the factored load by LRFD by using the equation.

Pu=1.2DL+1.6LL

He re DL is the dead load, LL is the live load.

Substitute

DL=30,LL=70

Pu=DL+LL     =30+70     =100kips

Try a C section C15×33.9

AISC must be used, as this shape is non slender and is neither a double angle nor a tee shape

Check the effective slenderness ratio about y-axis using the formula

slenderness ratio=KLr

Here K is the effective length factor

L is the length of the member between the supports

r is the radius of gyration

Take the properties steel from the AISC steel table. K value depends on the end conditions

K=0.65,(12×12)in,ry=0.901

slenderness ratio=KLr                          =0.65(12×12)0.901                          =103.9<200(OK)

Calculate the elastic buckling stress using the formula.

Fe=π2E(KL/rx)2Substitute E=29000,KL/r=103.9Fe=π2E(KL/r)2    =π229000103.92    =26.51ksi

Check for slenderness ratio by using the formula.

Slenderness ratio=4.71EFy

Here Fy is the yield strength

Substitute Fy=50ksi,E=29000

Slenderness ratio=4.712900050                           =113.4

Since 103.9< 113.4, so calculate critical buckling stress using the formula.

 Fcr=0.658(FyFe)Fy      =0.658(3626.51)(36)      =20.39ksi

Calculate the nominal compressive strength of column using the formula.

Pn=FcrAg

Substitute, Fcr = 20.39, Ag = 10.0

Pn=FcrAg

= 20.39(10.0)

= 203.9kips

Calculate design strength of the column using by ASD method.

Pu=PnΩ

Here we have Pn=203.9, Ω=1.67

Pu=PnΩ    =203.91.67    =122kips>100kips(OK)

Check the effective slenderness ratio about x-axis using the formula.

slenderness ratio=KLr

Substitute K=0.65,(12×12)in,rx=5.62

slenderness ratio=KLr                          =0.65(12×12)5.62                          =16.65

From the manual companion CD:

r¯o=5.94inH=0.920

Calculate the elastic buckling stress using the formula.

Fe=π2E(KL/rx)2Substitute E=29000,KL/r=16.65

Fe=π2E(KL/r)2    =π22900016.652    =1032ksi

Calculate the value of Fez

Fez=(π2ECw(KzL)2+GJ)1Agr¯o2      =[π2(29000)(358)(0.65×12×12)2+(11200(1.01))]110.0(5.94)2     =65.21ksi

Calculate the total stress by equation

Total stress=Fey+Fez                  =1032+65.21                  =1097ksi

Calculate the value of Fcr by using the AISC equation :

Fcr=(Fcry+Fcrz2H)[114FcryFcrzH(Fcry+Fcrz)2]      =(10972(0.920))[114(1032)(65.21)(0.920)10972]      =64.88ksi

In order to determine which compressive strength equation to be use, compare the value of Fe

0.44Fy=0.44(36)            =15.8ksi

Since 64.88>15.8, so calculate critical buckling stress using the formula.

Fcry=0.658(FyFe)Fy      =0.658(3664.88)(36)      =28.54ksi

Calculate the maximum strength by using the formula.

Pn=Fcr+Ag    =28.54(10.0)    =285.4kipscalculate the design strength of the column by using the formula Pn=PnΩPn=285.4,Ω=1.67Pn=PnΩ    =285.41.67    =171kips>100kips(OK)

Conclusion:

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Design the reinforcements of the given T beam below. bf=900mm bw=420mm tf-120mm d=550mm d'=80mm fc'=34MPa fy=415MPa USE NSCP 2015 A.Mu = 1300kN-m, As = mm2 B.Mu = 1800kN-m, As = mm2, As' = mm2
A PL 38 x 6 tension member is welded to a gusset plate as shown in figure. The steel is A36. PL ½ x 6 The design strength based on yielding is nearest to: The design strength based on rupture is nearest to: The design strength for LRFD is nearest to: The allowable strength based on yielding is nearest to: The allowable strenath based on rupture is nearest to: The allowable strength for ASD.
7 7a 7b 7c Alaterally supported beam was designed for flexure. The beam is safe for shear & deflection. The most economical section is structural tubing however the said section is not readily available at the time of the construction. If you are the engineer in charge of the construction what alternative section will be the best replacement? Why? The section is 8" x 8" x 7.94 mm thick: Use Fy=248 MPa: E=200,000 MPa AISC wall thickness Ix 106 S x 103 Jx 103 mm4 mm3 mm4 rx =ry Area Ag (mm2) mm Designation Weight/m 8x8 7.94 47.36 6,039 79.25 37.84 371.99 60.35 expla'n briefly your cho'ce. (transform your comparative analys's 'nto a narative form to support your cho'ce) 8x8 14.29 80.61 10,258 76.2 59.52 585.02 99.06 8x8 72.7 9,290 76.96 54.53 539.13 90.32 8x8 9.53 56.09 7,161 78.48 44.12 432.62 70.76 mm 12.7 Zx 103 mm3 437.53 714.48 650.57 512.92
Knowledge Booster
Background pattern image
Similar questions
Recommended textbooks for you
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning