Chemistry for Today: General, Organic, and Biochemistry
Chemistry for Today: General, Organic, and Biochemistry
9th Edition
ISBN: 9781305960060
Author: Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher: Cengage Learning
Question
Book Icon
Chapter 25, Problem 25.10E
Interpretation Introduction

(a)

Interpretation:

The percentage of the total O2 and CO2 transported by the blood in the form of O2 as dissolved gas in plasma is to be stated.

Concept introduction:

A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Expert Solution
Check Mark

Answer to Problem 25.10E

Only 2% of the total O2 transported by the blood is in the form of O2 as dissolved gas in the plasma.

Explanation of Solution

The percentage of dissolved gas depends on the extent of dissolution of gas in the aqueous medium. In plasma, O2 is not much soluble. It means that a small percentage of O2 as dissolved gas in plasma is present in the body. The value of this percentage is about 2%.

Therefore, only 2% of the total O2 transported by the blood is in the form of O2 as dissolved gas in the plasma.

Conclusion

Only 2% of the total O2 transported by the blood is in the form of O2 as dissolved gas in the plasma.

Interpretation Introduction

(b)

Interpretation:

The percentage of the total O2 and CO2 transported by the blood in the form of O2 as oxyhemoglobin is to be stated.

Concept introduction:

A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Expert Solution
Check Mark

Answer to Problem 25.10E

Approximately, 98% of the total O2 transported by the blood is in the form of O2 as oxyhemoglobin.

Explanation of Solution

The hemoglobin serves various functions in different chemical forms. One form of hemoglobin acts as an oxygen carrier in the blood. This form is named as oxyhemoglobin. Oxyhemoglobin is the type of hemoglobin that transports oxygen. Most of the oxygen is transported by the blood in this form. The percentage for this form is around 98%.

Therefore, 98% of the total O2 transported by the blood is in the form of O2 as oxyhemoglobin.

Conclusion

Approximately, 98% of the total O2 transported by the blood is in the form of O2 as oxyhemoglobin.

Interpretation Introduction

(c)

Interpretation:

The percentage of the total O2 and CO2 transported by the blood in the form of CO2 as carbaminohemoglobin is to be stated.

Concept introduction:

A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Expert Solution
Check Mark

Answer to Problem 25.10E

Approximately 25% of the total CO2 transported by the blood is in the form of CO2 as carbaminohemoglobin.

Explanation of Solution

The hemoglobin serves various functions in different chemical forms. Carbaminohemoglobin is another form of hemoglobin which is formed by combining hemoglobin with CO2. The percentage for this form is around 25%.

Therefore, 25% of the total CO2 transported by the blood is in the form of CO2 as carbaminohemoglobin.

Conclusion

Approximately, 25% of the total CO2 transported by the blood is in the form of CO2 as carbaminohemoglobin.

Interpretation Introduction

(d)

Interpretation:

The percentage of the total O2 and CO2 transported by the blood in the form of CO2 as dissolved gas in plasma is to be stated.

Concept introduction:

A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Expert Solution
Check Mark

Answer to Problem 25.10E

Approximately, 5% of the total CO2 transported by the blood is in the form of CO2 as dissolved gas in the plasma.

Explanation of Solution

The percentage of dissolved gas depends on the extent of dissolution of gas in the aqueous medium. In plasma, CO2 is not much soluble. It means a small percentage of CO2 as dissolved gas in plasma is present in the body. The value of this percentage is about 5%.

Therefore, only 5% of the total CO2 transported by the blood is in the form of CO2 as dissolved gas in the plasma.

Conclusion

Approximately, 5% of the total CO2 transported by the blood is in the form of CO2 as dissolved gas in the plasma.

Interpretation Introduction

(e)

Interpretation:

The percentage of the total O2 and CO2 transported by the blood in the form of CO2 as bicarbonate ions are to be stated.

Concept introduction:

A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Expert Solution
Check Mark

Answer to Problem 25.10E

Approximately 70% of the total CO2 transported by the blood is in the form of CO2 as bicarbonate ions.

Explanation of Solution

Bicarbonate ions (HCO3) are important for the biological processes going on in the body. These are present as buffers in the body which are required for biochemical reactions. Bicarbonate buffers are required for reactions occurring outside the cell. It means that fluid outside the cell is rich in HCO3. Plasma contains HCO3 in high concentration. The value of this percentage is about 70%.

Therefore, around 70% of the total CO2 transported by the blood is in the form of CO2 as bicarbonate ions.

Conclusion

Approximately, 70% of the total CO2 transported by the blood is in the form of CO2 as bicarbonate ions.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Is PbCl2 Soluable in water?
Kidney stones are crystals of calcium oxalate that form in the kidney, ureter, or bladder. Small kidney stones are passed out of the body easily, but larger kidney stones may block the ureter causing severe pain. If the [Ca2+] in blood plasma is 5 × 10-3 M, what [C2O42-] must be present to form a kidney stone? (Calcium oxalate Ksp = 2.3 x 10-9)
Calculate the amount of ascorbic acid in each sample. Each mL of 0.1 N iodine is equivalent to 8.806 mg of C6H8O6

Chapter 25 Solutions

Chemistry for Today: General, Organic, and Biochemistry

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning