Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 86P

(a)

To determine

The charge on the sphere.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The radius of the microsphere is 5.50×107m .

The Magnitude of electric field is 6.00×104N/m .

The magnitude of the drag force is 6πηrv .

The viscosity of the air is 1.8×105N.s/m2 .

The density of the polystyrene is 1.05×103kg/m3 .

Formula used:

Write the expression for the downward and upward force.

  FEmgFd=may ....... (1)

Here, FE is the electric force, m is the mass, g is acceleration due to gravity, Fd is the drag force.

Write the expression for the force.

  F=qE

Here, F is the force, q is the charge and E is the electric field.

Write the expression for the mass.

  m=ρV

Here, ρ is the density and V is the volume.

Substitute qE for FE , ρV for m , 0 for ay and 6πηrv for Fd in equation (1).

  qEρVg6πηrv=0 ....... (2)

Write the expression for the charge.

  q=Ne

Here, q is the total charge, N is the number of particles and e is the charge on particle.

Write the expression for the volume of the sphere.

  V=43πr3

Here, r is the radius.

Substitute Ne for q and 43πr3 for V in equation (2).

  NeEρ(43πr3)g6πηrv=0

Solve the above equation for Ne .

  Ne=43πr3ρg+6πηrvE ....... (3)

Calculation:

Substitute 5.50×107m for r , 1.05×103kg/m3 for ρ , 9.81m/s2 for g , 1.8×105N.s/m2 for η , 1.16×104m/s for v and 6.00×104N/m for E in equation (3).

  Ne=43π ( 5.50× 10 7 m )31.05× 103kg/ m 3( 9.81m/ s 2 )+6π5.50× 107( 1.8× 10 5 N.s/ m 2 )1.16× 10 4m/s6.00× 104N/mNe=4.8×1019C

Conclusion:

Thus, the charge on the sphere is 4.8×1019C .

(b)

To determine

The number of excess electron on the sphere.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The radius of the microsphere is 5.50×107m .

The Magnitude of electric field is 6.00×104N/m .

The magnitude of the drag force is 6πηrv .

The viscosity of the air is 1.8×105N.s/m2 .

The density of the polystyrene is 1.05×103kg/m3 .

Formula used:

Write the expression for the downward and upward force.

  FEmgFd=may

Here, FE is the electric force, m is the mass, g is acceleration due to gravity, Fd is the drag force.

Write the expression for the force.

  F=qE

Here, F is the force, q is the charge and E is the electric field.

Write the expression for the mass.

  m=ρV

Here, ρ is the density and V is the volume.

Substitute qE for FE , ρV for m , 0 for ay and 6πηrv for Fd in equation (1).

  qEρVg6πηrv=0

Write the expression for the charge.

  q=Ne

Here, q is the total charge, N is the number of particles and e is the charge on particle.

Write the expression for the volume of the sphere.

  V=43πr3

Here, r is the radius.

Substitute Ne for q and 43πr3 for V in equation (2).

  NeEρ(43πr3)g6πηrv=0

Solve the above equation for N .

  N=43πr3ρg+6πηrvEe ....... (4)

Calculation:

Substitute 5.50×107m for r , 1.05×103kg/m3 for ρ , 9.81m/s2 for g , 1.8×105N.s/m2 for η , 1.16×104m/s for v and 6.00×104N/m for E and 1.602×1019C for e in equation (3).

  N=43π ( 5.50× 10 7 m )31.05× 103kg/ m 3( 9.81m/ s 2 )+6π5.50× 107( 1.8× 10 5 N.s/ m 2 )1.16× 10 4m/s( 1.602× 10 19 C)6.00× 104N/mN=3

Conclusion:

Thus, the number of excess electron on the sphere is 3.

(c)

To determine

The new terminal speed.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The radius of the microsphere is 5.50×107m .

The Magnitude of electric field is 6.00×104N/m .

The magnitude of the drag force is 6πηrv .

The viscosity of the air is 1.8×105N.s/m2 .

The density of the polystyrene is 1.05×103kg/m3 .

Formula used:

Write the expression for the forces when electric field is upward.

  FdFEmg=0 ....... (5)

Here, FE is the electric force, m is the mass, g is acceleration due to gravity, Fd is the drag force.

Write the expression for the force.

  F=eE

Here, F is the force, e is the charge and E is the electric field.

Write the expression for the mass.

  m=ρV

Here, ρ is the density and V is the volume.

Substitute qE for FE , ρV for m , 43πr3 for V and 6πηrv for Fd in equation (1).

  6πηrvNeE(43πr3)ρg=0

Solve the above equation for v .

  v=NeE+(43πr3)ρg6πηr ....... (6)

Calculation:

Substitute 5.50×107m for r , 1.05×103kg/m3 for ρ , 9.81m/s2 for g , 1.8×105N.s/m2 for η , 3 for N , 6.00×104N/m for E and 1.602×1019C for e in equation (3).

  v=3( 1.602× 10 19 C)6.00× 104N/m+( 4 3 π ( 5.50× 10 7 m ) 3 )( 1.05× 10 3 kg/ m 3 )9.81m/ s 26π( 1.8× 10 5 N.s/ m 2 )5.50× 107mv=0.19mm/s

Conclusion:

Thus, the new terminal speed is 0.19mm/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 21 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY