Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
4th Edition
ISBN: 9780134639673
Author: Elizabeth A. Stephan, David R. Bowman, William J. Park, Benjamin L. Sill, Matthew W. Ohland
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 13, Problem 1ICA

Capillary action draws liquid up a narrow tube against the force of gravity as a result of surface tension. The height the liquid will move up the tube depends on the radius of the tube. The following data were collected for water in a glass tube in air at sea level. Show the resulting data and trendline with equation and R2 value, on the appropriate graph type (rectilinear, semilog, or log–log) to make the data appear linear

Chapter 13, Problem 1ICA, Capillary action draws liquid up a narrow tube against the force of gravity as a result of surface

Expert Solution & Answer
Check Mark
To determine

Show the resulting data and trend lines with equation and R2 value using either rectilinear, semilog or log-log graph.

Answer to Problem 1ICA

The data and trend line with equation and R2 value using log-log graph is shown in Figure 4.

Explanation of Solution

Description:

Step 1: Open the Excel Sheet, and enter the data as shown in Figure 1.

Thinking Like an Engineer: An Active Learning Approach (4th Edition), Chapter 13, Problem 1ICA , additional homework tip  1

Step 2: Select all the data from columns Radius and Height.

Step 3: Now, go to the Insert tab in the Excel and click on the Scatter Plot.

Step 4: Change the property of the plot to get the linear plot as follows.

  • Click on the y-axis, select format axis as shown in Figure 2.

Thinking Like an Engineer: An Active Learning Approach (4th Edition), Chapter 13, Problem 1ICA , additional homework tip  2

  • Similarly, click on the x-axis and format the axis.

Step 5: Click on points and add trendline as shown in Figure 3.

Thinking Like an Engineer: An Active Learning Approach (4th Edition), Chapter 13, Problem 1ICA , additional homework tip  3

Step 6: Label the axis of the plot properly as per the format shown below.

Labelformat:Variable(symbol)[unit].

Step 7: Mention the title of the plot as shown in Figure 4.

Thinking Like an Engineer: An Active Learning Approach (4th Edition), Chapter 13, Problem 1ICA , additional homework tip  4

Conclusion:

Hence, the data and trend line with equation and R2 value using log-log graph is shown in Figure 4.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
. I am planning to perform some volume-flow rate measurements in the Fluid Mechanics Laboratory. For this, I need a volumetric measuring tank (graduated cylinder) and a stopwatch. I considered the volume of the measured tank as 15 gallons and a stopwatch with reaction time as 1/10th of a second (though resolution of 1/1000th of a second). What is the volume flow rate if it takes 5 minutes to fill a 15-gallon of tank? Determine the smallest division to be on the tank in order to estimate the volume flow rate within an accuracy of ± 0.05 gpm.
For the following concentration expressions, indicate whether they are uniform or nonuniform and in how many dimensions (OD, 1D, 2D, or 3D), and steady or unsteady. Then for the following control volume and origin, and table of constants, use Excel or Matlab to graph profiles that show how concentration changes within the control volume and over time to a limit of 20 for the following: C(x,0,0,0), C(0,y,0,0), c(0,0,z,0) and C(0,0,0,t). On each graph, show which parameters are held constant, the CV boundaries, and the point where all four plots overlap. 20 C(x=0) 10 a 0.0001 b 0.001 20 0.01 y k 0.1 100 All of the following functions are C(space, time) and so not necessarily just x as suggested. a. C,(x)= C,(x = 0)x exp{- ax} d. C, (x) = C, (x = 0)x exp{-ax}x exp{- by² }x exp{-cz²}x exp{- kt}
Ql: The viscosity in industrial measurement continue to use the CGS system of Lunits, since centimeters and grams vield convenient numbers for many fluids. The absolute viscosity () unit is the poise, I poise = 1 gtem. s). The kinematic viscosity (v) unit is the stohes, I stokes = 1 em /s. Water at 20C has u = 001 poise and also V= 0.01 stokes. Express these resalts in (a) SI and (h) BG tanits.

Chapter 13 Solutions

Thinking Like an Engineer: An Active Learning Approach (4th Edition)

Ch. 13 - Prob. 7ICACh. 13 - The following instructions apply to ICA 13-7 to...Ch. 13 - The following instructions apply to ICA 13-7 to...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - The following instructions will apply to ICA 13-10...Ch. 13 - Prob. 21ICACh. 13 - As a reminder, the Reynolds number is discussed in...Ch. 13 - As a reminder, the Reynolds number is discussed in...Ch. 13 - An environmental engineer has obtained a bacteria...Ch. 13 - An environmental engineer has obtained a bacteria...Ch. 13 - An environmental engineer has obtained a bacteria...Ch. 13 - A growing field of inquiry that poses both great...Ch. 13 - If an object is heated, the temperature of the...Ch. 13 - The Volcanic Explosivity Index (VEI) is based...Ch. 13 - You are an engineer for a plastics manufacturing...Ch. 13 - A Pitot tube is a device used to measure the...Ch. 13 - As part of an electronic music synthesizer you...Ch. 13 - The following data were collected during testing...Ch. 13 - The relationship of the power required by a...Ch. 13 - When a fluid flows around an object, it creates a...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY