Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
5th Edition
ISBN: 9780534408961
Author: Stephen T. Thornton, Jerry B. Marion
Publisher: Cengage Learning
Question
Book Icon
Chapter 3, Problem 3.36P
To determine

The expression for the displacement of a linear oscillator analogous to Equation 3.110 for the initial conditions x(t0)=x0 and x˙(t0)=x˙0.

Blurred answer
Students have asked these similar questions
The θ integration fails if α is non-constant.  There is also a type of situation where the step before the integration fails, involving ω. Question 3: derive θ = θ0 + (ω + ω0) t/2. You probably need to use prior derived results.
Our unforced spring mass model is mx00 + βx0 + kx = 0 with m, β, k >0. We know physically that our spring will eventually come to rest nomatter the initial conditions or the values of m, β, or k. If our modelis a good model, all solutions x(t) should approach 0 as t → ∞. Foreach of the three cases below, explain how we know that both rootsr1,2 =−β ± Sqrt(β^2 − 4km)/2mwill lead to solutions that exhibit exponentialdecay.(a) β^2 − 4km > 0. (b) β^2 − 4km =0. (c) β^2 − 4km >= 0.
Consider the solution tothe harmonic oscillator given above by x(t)=Ccos(wt−v) Prove tha tx(t0)=x(t0+2piw) In other words, the solution has the same value at time:t0 and at time:t0+2piw regardless of what value we have for ?0. The value 2piw is then the period T of the harmonic oscillator.

Chapter 3 Solutions

Classical Dynamics of Particles and Systems

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning