Consider a simple climate model in which the Earth's atmosphere is represented as a single layer that is transparent to solar radiation but has an absorptivity of 0.8 in the infrared. The Earth's overall albedo is 0.3. a) Draw a diagram to illustrate the contributions to the radiation budget above the atmosphere and directly above the surface. b) Calculate the temperature of the ground in this model. c) Calculate the temperature of the atmosphere in this model. d) An increase in carbon dioxide causes the infrared absorptivity of the atmosphere to increase by 2.6 %. Calculate the resulting change in surface temperature.

College Physics
1st Edition
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:Paul Peter Urone, Roger Hinrichs
Chapter7: Work, Energy, And Energy Resources
Section: Chapter Questions
Problem 43PE: (a) Calculate the power per square meter reaching Earth's upper atmosphere from the Sun. (Take the...
icon
Related questions
icon
Concept explainers
Question
Consider a simple climate model in which the Earth's atmosphere is represented as a single
layer that is transparent to solar radiation but has an absorptivity of 0.8 in the infrared. The
Earth's overall albedo is 0.3.
a) Draw a diagram to illustrate the contributions to the radiation budget above the atmosphere
and directly above the surface.
b) Calculate the temperature of the ground in this model.
c) Calculate the temperature of the atmosphere in this model.
d) An increase in carbon dioxide causes the infrared absorptivity of the atmosphere to increase
by 2.6 %. Calculate the resulting change in surface temperature.
Transcribed Image Text:Consider a simple climate model in which the Earth's atmosphere is represented as a single layer that is transparent to solar radiation but has an absorptivity of 0.8 in the infrared. The Earth's overall albedo is 0.3. a) Draw a diagram to illustrate the contributions to the radiation budget above the atmosphere and directly above the surface. b) Calculate the temperature of the ground in this model. c) Calculate the temperature of the atmosphere in this model. d) An increase in carbon dioxide causes the infrared absorptivity of the atmosphere to increase by 2.6 %. Calculate the resulting change in surface temperature.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage