Consider the following mechanism  in aqueous solutions. At 298 K the equilibrium constant for the first step is 5.75⋅10−35.75⋅10-3                                                                           k1k1                                Step1:              A + A         −−→←−−←→           A + B                                                                                               k−1k-1                                                                                             k2k2                                Step2:                   B       →→          P     When [A]  is large,  the second step is slow and the first step is

Introductory Chemistry: A Foundation
9th Edition
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Donald J. DeCoste
Chapter17: Equilibrium
Section: Chapter Questions
Problem 13CR
icon
Related questions
Question

Consider the following mechanism  in aqueous solutions. At 298 K the equilibrium constant for the first step is 5.75⋅10−35.75⋅10-3  

                                                                        k1k1 

                              Step1:              A + A         −−→←−−←→           A + B

                                                                                              k−1k-1 

 

                                                                                         k2k2 

                              Step2:                   B       →→          P

 

 

When [A]  is large,  the second step is slow and the first step is fast and at equilibrium.   

Under these conditions the following experimental data is gathered.   The third column in the table is a check to make sure [A] is sufficiently large. The ratio should be greater than 100 when the absolute uncertainties are ±0.01±0.01    Note that as time goes on here, the assumption we are making will not work.  

Time  (s) [A]  (mol L-1)  k−1[A]k2k-1[A]k2    (s)
5.00 0.993 1,970
25.0 0.967 1,920

(a) Use the correct integrated rate law obtained by analyzing the mechanism to find a value for the rate constant k2.k2. 

First calculate the effective rate constant. You need to do the proper analysis of the mechanism to find what combinations of k1k1, k−1k-1 and k2k2 give you the effective rate constant.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Chemical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax