A process for ethanol synthesis has been developed and the ethylene hydration operating conditions have been optimized in order to reduce production costs (Ayaou et al., 2019). Ethanol is manufactured by reacting ethylene with steam at 150 °C (423.15 K). The reaction takes place in a gas phase and the formation of the ethanol is an exothermic process and assume as ideal gases. C₂H4 (g) +H₂O(g) →C₂H5OH(g) Your classmate claims that the equilibrium constant decreases as the temperature decreases. Evaluate the effect of reducing the temperature to 100 °C whether this observation make sense. Support your answer with the necessary calculations. Available information for the calculation are as follows: ΔΑ -1.376 AB 4.157X10-3 AC -1.610X10-6 AD -1.210X10+4 AH 298 (J/mol) AG298 (J/mol) -45,792 -8,378

Physical Chemistry
2nd Edition
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Ball, David W. (david Warren), BAER, Tomas
Chapter6: Equilibria In Single-component Systems
Section: Chapter Questions
Problem 6.50E
icon
Related questions
Question

THERMO

A process for ethanol synthesis has been developed and the ethylene hydration operating
conditions have been optimized in order to reduce production costs (Ayaou et al., 2019).
Ethanol is manufactured by reacting ethylene with steam at 150 °C (423.15 K). The reaction
takes place in a gas phase and the formation of the ethanol is an exothermic process and
assume as ideal gases.
C2H4 (9) + H20(g) → C2H50H(g)
Your classmate claims that the equilibrium constant decreases as the temperature decreases.
Evaluate the effect of reducing the temperature to 100 °C whether this observation make
sense. Support your answer with the necessary calculations.
Available information for the calculation are as follows:
ΔΑ
AH°298 (J/mol) AG°298 (J/mol)
-45,792
AB
AC
-1.610X106
AD
-1.376
4.157X10-3
-1.210X10*4
-8,378
Transcribed Image Text:A process for ethanol synthesis has been developed and the ethylene hydration operating conditions have been optimized in order to reduce production costs (Ayaou et al., 2019). Ethanol is manufactured by reacting ethylene with steam at 150 °C (423.15 K). The reaction takes place in a gas phase and the formation of the ethanol is an exothermic process and assume as ideal gases. C2H4 (9) + H20(g) → C2H50H(g) Your classmate claims that the equilibrium constant decreases as the temperature decreases. Evaluate the effect of reducing the temperature to 100 °C whether this observation make sense. Support your answer with the necessary calculations. Available information for the calculation are as follows: ΔΑ AH°298 (J/mol) AG°298 (J/mol) -45,792 AB AC -1.610X106 AD -1.376 4.157X10-3 -1.210X10*4 -8,378
Table B.2: Constant for the Antoine Equation for Vapor Pressure of Pure Species
In Pa /kPa = A-[B/(T/K+ C)}
Latent heat of vaporization at the normal boiling point (AH,) and normal boiling point (T)
Parameters for Antoine Equation Temperange Range AH,
T
Name
Formula
A*
K
kJ/mol
K
From
To
247.15
350.15
29.10
329.35
C3H&O
C2H4O2 15.0717 3580.80
C2H3N 14.8950 3413.10
C6H6
C,H10
CH10
C4H100 15.3144 3212.43
C,H100 15.1989 3026.03
C4H100 14.6047 2740.95
C4H100 14.8445 2658.29
CC4
C,HSCI 13.8635 3174.78
C4H9CI 13.7965 2723.73
CHCI3
C6H12
CSH10
CioH22 13.9748 3442.76
CH2C12 13.9891 2463.93
C4H100 14.0735 2511.29
C,HgO, 15.0967 3579.78
Acetone
14.3145 2756.22
-45.090
Acetic acid
-48.500
297.15
415.15
23.70
391.05
-22.627
-55.578
246.15
279.15
Acetonitrile
354.15
30.19
354.75
Benzene
13.7819 2726.81
377.15
30.72
353.15
iso-Butane
13.8254 2181.79
-24.280
190.15
280.15
21.30
261.25
200.15
310.15
13.6608 2154.70
-34.361
292.15
22.44
272.65
n-Butane
1-Butanol
2-Butanol
390.75
372.65
-90.411
411.15
43.29
-86.650
298.15
393.15
40.75
-106.480
-95.500
-41.002
41.82
39.07
iso-Butanol
303.15
401.15
380.95
283.15
374.15
355.45
tert-Butanol
Carbon tetrachloride
Chlorobenzene
349.75
404,85
351.65
334.25
14.0572 2914.23
259.15
374.15
29.82
-61.450
-54.885
-54.598
302.15
432.15
35.19
256.15
250.15
282.15
1-Chlorobutane
352.15
30.39
Chloroform
13.7324 2548.74
357.15
29.24
29.97
27.30
38.75
13.6568 2723.44
-52.532
378.15
353.85
Cyclohexane
Cyclopentane
n-Decane
13.9727 2653.90
-38.640
238.15
344.15
322.35
-79.292
-49.910
338.15
476.15
447.25
28.06
26.52
Dịchloromethane
235.15
333.15
312.85
230.15
328.15
307.55
Diethyl ether
1,4-Dioxane
-41.950
-32.813
293.15
378.15
34.16
374.45
481.15
276.15
57.49
-141.050
-42.232
616.75
351.35
652.15
C20H42 144,575 4680.46
16.8958 3795.17
n-Eicosane
38.56
35.57
Ethanol
369,15
436.15
409.35
Ethylbenzene
Ethylene glycol
n-Heptane
-60.850
306.15
C3H10
C2H6O2 15.7567 4187.46
CH16
13.9726 3259.93
50.73
470.45
-94.500
-56.718
373.15
495.15
396.15
365.15
13.8622 2910.26
277.15
31.77
371.55
254.15
262.15
250.15
341.85
337.85
330.05
13.8193 2696.04
-48.833
28.85
C6H14
CH40
C3H6O2 14.2456 2662.78
n-Hexane
35.21
30.32
356.15
Methanol
Methyl acetate
Methyl ethyl ketone C4HgO 14.1334 2838.24
Nitromethane
16.5785 3638.27
-33.650
-53.460
-54.460
351.15
31.30
265.15
329.15
319.15
376.15
352.75
33.99
374.35
CH3NO2 14.7513 3331.70
C9H20
C3H18
-45.550
419.15
451.15
36.91
423.95
-70.456
-52.383
n-Nonane
13.9854 3311.19
275.15
299.15
iso-Octane
13.6703 2896.31
398.15
30.79
372.35
--63.515
425.15
34.41
398.75
CSH18
CSH12
n-Octane
13.9346 3123.13
331.15
25.79
309.15
228.15
353.15
n-Pentane
13.7667 2451.88
-41.136
Phenol
14.4387 3507.80
-97.750
481.15
46.18
454.95
-67.343
293.15
389.15
41.44
370.35
1-Propanol
2-Propanol
Toluene
16.1154 3483.67
373.15
409.15
CaHgO
16.6796 3640.20
-53.540
281.15
39.85
355.35
383.75
373.15
33.18
286.15
273.15
13.9320 3056.96
-55.525
473.15
40.66
H20
CSH10
C3H10
C&H10
Water
16.3872 3885.70
-42.980
313.15
308.15
308.15
14.0415 3358.79
-61.109
445.15
36.24
417.55
о-Хylene
m-Xylene
p-Xylene
14.1387 3381.81
-57.030
439.15
35.66
412.25
14.0579 3331.45
-58.523
439.15
35.67
411.45
Based primarily on data presented by B. E. Poling. J. M. Prausnitz and J. P. O'Connell,
The Properties of Gases and Liquids, Sth ed., App. A. McGraw-Hill, New York, 2001.
*Antoine parameters adapted from Gmehling et al. See footnote 2, p. 791.
**Antoine parameters A are adjusted to reproduce the listed values of T,.
Transcribed Image Text:Table B.2: Constant for the Antoine Equation for Vapor Pressure of Pure Species In Pa /kPa = A-[B/(T/K+ C)} Latent heat of vaporization at the normal boiling point (AH,) and normal boiling point (T) Parameters for Antoine Equation Temperange Range AH, T Name Formula A* K kJ/mol K From To 247.15 350.15 29.10 329.35 C3H&O C2H4O2 15.0717 3580.80 C2H3N 14.8950 3413.10 C6H6 C,H10 CH10 C4H100 15.3144 3212.43 C,H100 15.1989 3026.03 C4H100 14.6047 2740.95 C4H100 14.8445 2658.29 CC4 C,HSCI 13.8635 3174.78 C4H9CI 13.7965 2723.73 CHCI3 C6H12 CSH10 CioH22 13.9748 3442.76 CH2C12 13.9891 2463.93 C4H100 14.0735 2511.29 C,HgO, 15.0967 3579.78 Acetone 14.3145 2756.22 -45.090 Acetic acid -48.500 297.15 415.15 23.70 391.05 -22.627 -55.578 246.15 279.15 Acetonitrile 354.15 30.19 354.75 Benzene 13.7819 2726.81 377.15 30.72 353.15 iso-Butane 13.8254 2181.79 -24.280 190.15 280.15 21.30 261.25 200.15 310.15 13.6608 2154.70 -34.361 292.15 22.44 272.65 n-Butane 1-Butanol 2-Butanol 390.75 372.65 -90.411 411.15 43.29 -86.650 298.15 393.15 40.75 -106.480 -95.500 -41.002 41.82 39.07 iso-Butanol 303.15 401.15 380.95 283.15 374.15 355.45 tert-Butanol Carbon tetrachloride Chlorobenzene 349.75 404,85 351.65 334.25 14.0572 2914.23 259.15 374.15 29.82 -61.450 -54.885 -54.598 302.15 432.15 35.19 256.15 250.15 282.15 1-Chlorobutane 352.15 30.39 Chloroform 13.7324 2548.74 357.15 29.24 29.97 27.30 38.75 13.6568 2723.44 -52.532 378.15 353.85 Cyclohexane Cyclopentane n-Decane 13.9727 2653.90 -38.640 238.15 344.15 322.35 -79.292 -49.910 338.15 476.15 447.25 28.06 26.52 Dịchloromethane 235.15 333.15 312.85 230.15 328.15 307.55 Diethyl ether 1,4-Dioxane -41.950 -32.813 293.15 378.15 34.16 374.45 481.15 276.15 57.49 -141.050 -42.232 616.75 351.35 652.15 C20H42 144,575 4680.46 16.8958 3795.17 n-Eicosane 38.56 35.57 Ethanol 369,15 436.15 409.35 Ethylbenzene Ethylene glycol n-Heptane -60.850 306.15 C3H10 C2H6O2 15.7567 4187.46 CH16 13.9726 3259.93 50.73 470.45 -94.500 -56.718 373.15 495.15 396.15 365.15 13.8622 2910.26 277.15 31.77 371.55 254.15 262.15 250.15 341.85 337.85 330.05 13.8193 2696.04 -48.833 28.85 C6H14 CH40 C3H6O2 14.2456 2662.78 n-Hexane 35.21 30.32 356.15 Methanol Methyl acetate Methyl ethyl ketone C4HgO 14.1334 2838.24 Nitromethane 16.5785 3638.27 -33.650 -53.460 -54.460 351.15 31.30 265.15 329.15 319.15 376.15 352.75 33.99 374.35 CH3NO2 14.7513 3331.70 C9H20 C3H18 -45.550 419.15 451.15 36.91 423.95 -70.456 -52.383 n-Nonane 13.9854 3311.19 275.15 299.15 iso-Octane 13.6703 2896.31 398.15 30.79 372.35 --63.515 425.15 34.41 398.75 CSH18 CSH12 n-Octane 13.9346 3123.13 331.15 25.79 309.15 228.15 353.15 n-Pentane 13.7667 2451.88 -41.136 Phenol 14.4387 3507.80 -97.750 481.15 46.18 454.95 -67.343 293.15 389.15 41.44 370.35 1-Propanol 2-Propanol Toluene 16.1154 3483.67 373.15 409.15 CaHgO 16.6796 3640.20 -53.540 281.15 39.85 355.35 383.75 373.15 33.18 286.15 273.15 13.9320 3056.96 -55.525 473.15 40.66 H20 CSH10 C3H10 C&H10 Water 16.3872 3885.70 -42.980 313.15 308.15 308.15 14.0415 3358.79 -61.109 445.15 36.24 417.55 о-Хylene m-Xylene p-Xylene 14.1387 3381.81 -57.030 439.15 35.66 412.25 14.0579 3331.45 -58.523 439.15 35.67 411.45 Based primarily on data presented by B. E. Poling. J. M. Prausnitz and J. P. O'Connell, The Properties of Gases and Liquids, Sth ed., App. A. McGraw-Hill, New York, 2001. *Antoine parameters adapted from Gmehling et al. See footnote 2, p. 791. **Antoine parameters A are adjusted to reproduce the listed values of T,.
Expert Solution
steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Thermodynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,