A block of mass m is initially at rest at the highest point of an inclined plane, which has a height of 5.1 m and has an angle of θ = 16° with respect to the horizontal. After being released, it is found to be moving at v = 0.55 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the block and the plane is μp = 0.1, and the coefficient of friction on the horizontal surface is μr = 0.2. Find the distance, d, in meters.

Classical Dynamics of Particles and Systems
5th Edition
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Stephen T. Thornton, Jerry B. Marion
Chapter9: Dynamics Of A System Of Particles
Section: Chapter Questions
Problem 9.19P
icon
Related questions
icon
Concept explainers
Question

A block of mass m is initially at rest at the highest point of an inclined plane, which has a height of 5.1 m and has an angle of θ = 16° with respect to the horizontal. After being released, it is found to be moving at v = 0.55 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the block and the plane is μp = 0.1, and the coefficient of friction on the horizontal surface is μr = 0.2. Find the distance, d, in meters. 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Hi, why can't you solve for vb using the work energy theorum? Since it is initailly at rest and you know vo=0m/s and all the components of work on the incline?

Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning